11 February 2017

Intermittent Electricity From UK Solar PV Costs 3.78X More Than Nuclear !

There isn't a decent sized solar farm in the UK where the information is available on both cost and electricity generated.

Turn to France and we've got it all:
Source 1      Source 2

Calculating the Output of a 300 MW Plant in the UK: 

2012: 1,736 MW delivered 1,328 GWh
So 300 MW would deliver 229.5 GWh

2013: 2,822 MW delivered 2,015 GWh
So 300 MW would deliver 214.2 GWh

2014: 5,228 MW delivered 3,931 GWh
So 300 MW would deliver 225.6 GWh

  2015: 8,915 MW delivered 7,556 GWh
So 300 MW would deliver 254.3 GWh
Statistics Section - Table
Average of 229.5 + 214.2 + 225.6 + 254.3
 = 230.9 GWh/year

Reasonable Life Expectancy of a Solar Array to fall to 80% efficiency - 30 years     Source

The average over 30 years of delivery would be 90% of 
the 230.9 average value: 230.9 x 0.9 = 207.8 GWh/year

Delivery over 30 year Life Expectancy = 6.234 TWh

Exchange Rate 2014: GBP/USD - 1.6$ to the £     Source

So 2014 cost of 300 MW UK Plant = £281.25 million
--------------------//--------------------
Comparative Data: Hinkley Point C Nuclear Power Plant

Source 1 - Page 15          Source 2

Delivery over 60 year Life Expectancy = 1,513.7 TWh

1,513.7 ÷ 6.234 = 242.8
242 Cestas-sized Solar Parks would have to be built
to deliver the same amount of electricity !

242 x 281,250,000 = 68,062,500,000
242 Cestas-sized Solar Parks would cost £68 billion !

£68 billion ÷ £18 billion = 3.78

For the same capital expenditure nuclear power will deliver nearly 
4X more 24/7 electricity 
than the intermittent electricity delivered by Solar Parks
--------------------//--------------------
242 x 2.5 = 605
242 Solar Parks would cover 605 square kilometres.

Solar Parks just about covering the 
Pembrokeshire Coast National Park !
Imagine:         Adventures Not In A Solar Park

04 February 2017

Kilgallioch - Here We Go Again - Twice The Price Of Nuclear!



Once the programme is completed, in 2017 this will be the UK’s third largest onshore wind farm, with 96 wind turbines with a generating capacity of up to 239 MW, the capacity of the wind farm will be enough to power the equivalent of 130,000 households per year.

A bit of simple arithmetic:
"...annual UK average domestic household consumption is 3,994kWh..."
"...Most wind turbines should last for about 25 years with normal inspection and maintenance..."
130,000 homes x 3,994 kWh = 0.51922 TWh/year.
0.51922 TWh/year x 25 year = 12.98 TWh
of intermittent electricity!

But Hinkley Point C nuclear power plant rated at 3.2 GW, operating at 90% capacity factor, with a design life of 60 years, delivers 1,513.7 TWh
of 24/7 electricity!

116 Kilgalliock-sized wind farms would need to be built to deliver the same amount of [intermittent] electricity as the [24/7] electricity delivered by HPC.
116 wind farms x £300 million = £34.8 billion.
That's HPC + 93%

116 of these GREEN power plants:
coupled with ISSUES:
"...Apart from water, peat bogs are largely composed of huge volumes of saturated, undecayed plants. A single hectare typically contains more than 5000 tonnes of carbon, ten times more than a typical hectare of forest. But any disturbance leads to lower water levels and to the peat drying, oxidising and releasing its carbon, says biochemist Mike Hall of the Cumbria Wildlife Trust.

The bog can decompose for hundreds of metres round every turbine, potentially releasing millions of tonnes of carbon. The process is slow, but frequently unstoppable, Hall says. So many wind farms may eventually emit more carbon than an equivalent coal-fired power station..."

Then there's LAND USE:
116 Kilgalliochs at 32 square kilometres each
= 3,712 square kilometres.
THAT'S NEARLY 60% OF THE WHOLE OF 
DUNFRIES & GALLOWAY!